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Quantisation of the non-linear super-Poincare fermion in a 
bag-like formulation 

N S Baaklini and H B Bouzouita 
International Centre for Theoretical Physics, PO Box 586-34100 Trieste, Italy 

Received 19 January 1978 

Abstract. The quantisation of the Volkov-Akulov fermion of non-linear super-Poincar6 
symmetry is studied using Dirac’s generalised Hamiltonian method. The problem is found 
to be much simplified in a bag-like formulation of the model. The theory of a quark 
super-bag and a super-bubble is discussed. 

( b )  1. Introduction 

The Volkov-Akulov model (Volkov and Akuiov 1973) of non-linear super-Poincar6 
symmetry (Golf’and and Likhtman 197 1) describes a massless Goldstone fermion 
corresponding to the fermionic spinorial generator. The self-interactions of this 
fermion as well as its interactions with other fields are highly non-linear derivative 
expressions. The canonical quantisation of this theory, by Dirac’s method (Dirac 1964), 
thus seems to be a formidable task. 

Our purpose, in this paper, is two-fold. First, we shall simplify the problem of 
quantisation of the Volkov-Akulov non-linear fermion. This is achieved by refor- 
mulating the theory in a manner preserving the Goldstone vector field of four 
translations as a basic canonical variable. We recall that in the Volkov-Akulov 
approach, this field is identified with the Minkowskian space-time coordinate. In our 
approach, this field plays the role of the Minkowskian volume coordinate of a bag. 
However, after quantisation, we can identify this field with the parametrisation 
coordinates through gauge-fixing conditions. 

Second, our purpose is to present this formulation of the Volkov-Akulov model of 
non-linear super-Poincar6 symmetry as that of a quark-bag (or bubble) embedded in 
Minkowski space. Our work is thus a study of the canonical dynamics of this extended 
object. In $ 2  we review the Volkov-Akulov model and present the problem of 
quantising the non-linear fermion. In 83 ,  we study the quantisation problem in a 
bag-like formulation. We consider the terms corresponding to the volume inside the 
bag. These are relevant to the Volkov-Akulov theory. In 8 4, we consider the terms 
corresponding to the (membranous) bag surface. Finally, in 8V,  we discuss the 
relevance of our work to other more important problems. 

2. The Volkov-Akulov non-linear fermion 

Corresponding to the four-translational generator Pa and the (Majorana) fermionic 
supertranslational generator S, of the super-Poincar6 algebra, one introduces (Volkov 
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and Akulov 1973, Volkov and Soroka 1974, Baaklini 1978, 1979), respectively, the 
Goldstone fields ua(x) and +"(x). These transform as follows: 

SU"(X) = t" +Ciya+(x), 

S+"(X) = E". (1)  

Here f a  and E" are constant (x-independent) parameters of four-translations and 
super-translations, respectively. Under the above transformations (l), the following 
one-forms are invariant: 

Vu" =dva-&ya  d+. ( 2 )  
From these invariant one-forms, one constructs the invariant action 

In the Volkov-Alkulov approach (Volkov and Akulov 1973), one identifies u a  with the 
Minkowskian space-time coordinate x,. Thus 

a,ua = 6;. (4) 

The transformations (1) become 

ax, = t, +Fiyw+(x), 

SS l / " (x )=e"+~ iy~+a ,++ t"  a,+. 
The action (3) reduces to 

A =  d4x [ - 1 + & i , d + + t ( T ~ T ~ - T ~ T C )  

E ,ulo TZT T: + &e mwK T T ZTf T: 1, + PAP 

I 
where 

TFY = $yp a d .  (7 )  
The canonical momentum i j " ( x ) ,  conjugate to +"(x), is 

i j n  = - ~ [ e i ' k ~ m O ~ C k i y u ( ~ ~ - ( I l i y T  ai+)(sr - $iyw aj+)(8i -&yK dk+) ]" .  (8) 

From (8), we have the weakly vanishing ( = O )  second-class constraint 

2" (x) = i j "  ( x )  + &[e ijke(TTOKJli y " ( ~ ;  - (Iliy' ai+) 
x(6r-Jliy" a , ~ l ) ( ~ i - & i y "  ak+)]" = O .  (9) 

In order to put the constraint (9) strongly equal to zero, thus eliminating i j "  in Dirac's 
method (Dirac 1964), one must define new Poisson (or Dirac) brackets, 

(10) { f >  g)* =If,  g ) - { f ,  2"lM,;{2P, gl, 

{G 2g)+ =Ma!p. (1  1) 

for any two functions f and g of the canonical variables. Here Map is defined by 

From (9) and (11) we thus see that the matrix Map is a complicated expression. 
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Consequently, its inverse and the quantisation rules based on the resulting Dirac 
brackets are very complicated. Hence we propose a different scheme based on the 
action (3), without identifying v a  with x, through the condition (4). In the following 
section, we consider both v " ( x )  and 4" (x) as the basic canonical variables in the process 
of quantisation. 

3. Quantisation in a bag-like formulation 

The Volkov-Akulov action (3) can be rewritten in the form 

A = J d4x (-det glrv)1'2, 

The relation of the form (12) to the actions of the string, the membrane and the bag is 
very obvious. Actually, the form (12) is, in the absence of the fermion, the usual volume 
term of the bag action. 

Besides invariance under (global) Lorentz transformations of the embedding 
Minkowski space, acting on the vector index a and the spinor index a, the action (12) is 
invariant under the (global) four-translational and the super-translational trans- 
formations (1). Moreover, it is invariant under general coordinate transformations or 
reparametrisations acting on the index p. 

The momenta P a ( x )  and q"(x), conjugate to u a ( x )  and @(x) are, respectively, 

Pa = (-det g,") e VFva, (14) 

f a  = -Pa(tjiyaIa, (15) 

112 "0 

where e"" is the inverse of gpv, 
"" e g, =Sf .  

We define the fundamental Poisson brackets: 

{ v a  (r), pb(y  11- = 8:s3(x - Y 1, 
{4"b), i iB(Y))+  = 8:83(x-Y). 

From (14) and (15) we obtain the constraints 

Using (17)-(20), we find that the Poisson brackets of xi and xo among themselves and 
with Ka are weakly vanishing. Moreover, we have 

The Hamiltonian of the theory is vanishing up to the contraints (18) and (19). Hence xi 
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and ,yo are first-class constraints corresponding to the invariance under four- 
reparametrisations. The constraints Ea are second class. Note that, contrary to the case 
of the previous section, the matrix Mas defined by (21) is simple. Consequently one 
easily calculates the Dirac brackets of equations (10). 

The Dirac brackets for our canonical variables are 

In order to put the four first-class constraints x i  and xo strongly equal to zero, we must 
introduce four corresponding gaugc-fixing conditions. We may take the constraints 

c, =U, -x, =o .  (23) 

The gauge-fixing constraints (23) have the effect, like the Volkov-Akulov restriction 
(4), of identifying, inside the bag volume, the Minkowskian bag coordinates with the 
proper parametrisation coordinates. 

Nevertheless, one may consider the constraints xi and ,yo as functional differential 
equations obeyed by the state functional C$(v", i,bu), by making the usuaf substitution, 
P, + 6/iSv". The functional differential equation 

corresponding to XO, is like the Klein-Gordon equation for a point particle. The role 
played by the anticommuting quantum field variables (x) in the above equation is not 
clear. It is by solving (24) and also the equations corresponding to xi,  that one finds the 
quantum state inside the bag volume, and, similarly, the quantum states of the 
Volkov-Akulov theory. 

4. The dynamics of a super-bubble 

The conventional bag model of hadrons (Hasenfratz and Kuti 1978) contains a surface 
term (a bubble or a membrane), besides the volume term. We can similarly introduce 
such a term 

A = (T J dxo dx2 dx3 (det grs)*", 
x , = l  

Here (+ is the surface tension and x1 = 1 defines the bag surface. 
The study of the dynamics of this surface term is very similar to that of the previous 

section. However, whereas the Minkowskian volume coordinates can all be identified 
(via gauge-fixing) with the parametrisation coordinates, three of the Minkowskian 
surface coordinates can be identified in this way and the remaining one is left as a free 
canonical quantum variable. 
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Proceeding as in the previous section, we define the (surface) momenta, conjugate to 
v a  and respectively by 

where f" is the inverse of g,s. 
Thus we have the first-class constraints 

ZR T a v R u a  0, R = 2,3,  (29) 

X I J E T :  +detlgRsl z o ,  (30) 
and the fermion second-class constraint 

icu = + T a (Ji ya )" = 0. (31) 
The elimination of the fermion constraint is similar to the previous section. The 
gauge-fixing conditions corresponding to ZR and Zo can be taken to be 

c, U, - x ,  = 0. (32) 
Therefore, u l ( x )  is left, together with & ( x )  as a canonical variable. 

On the basis of the boundary conditions determined by the geometry of the bubble, 
one expands the canonical variables in terms of the Fourier series and proceeds to 
obtain the spectrum of the quantum states. This work will be relegated to a more 
realistic and physically interesting model of which the present one is only a part. 

5. Discussion 

In this paper we have pointed out the simplification encountered in the formulation of 
the problem of the quantisation of the Volkov-Akulov super-Poincar6 fermion. This is 
achieved in a bag-like formulation of the model. Such a result seems to indicate the 
relevance of (non-linear) supersymmetry to the physics of extended objects. In the 
locally super-Poincar6 symmetric extension of the theory (Volkov and Soroka 1974, 
Baaklini 1978, 1979) one introduces spin-2 and spin-$ fields as gauge fields in the bag. 
It has been proposed (Baaklini 1978,1979) that such a bag model of supergravity may 
serve as a geometric theory of hadron structure. This is our basic physical motivation 
for the present formulation of the quantisation problem. 

On the other hand, leaving the application to hadronic physics aside, a locally 
Poincark (and super-PoincarC) symmetric bag-like model of gravity (and supergravity) 
is an extension which deserves particular attention in itself, mainly in relation to the 
quantisation problem of these theories. 

6. Conclusion 

We have considered in the present formulation of the quantisation problem the 
translational Goldstone fields of the global super-Poincar6 symmetry. A study of the 
spectrum of the quantum states, i.e. the solution of the quantum problem, would be 
more appropriate in the physically more important theory which incorporates the local 
symmetries. 
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